5. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО СИГНАЛА

5.1. Основные понятия

Переменным называется сигнал (например, ток), величина и направление которого меняется во времени: i = f(t). В технике часто встречается переменный сигнал, значение которого повторяется в одной и той же последовательности через равные промежутки времени, называемые периодами: i(t) = i(t+T), где T – период переменного сигнала. Такой сигнал называется *периодическим*. Величина, обратная периоду, называется частотой, измеряется в герцах (Гц): f = 1/T, её смысл – количество периодов в секунду. Промышленная частота в России и Европе 50 Гц, в США 60 Гц.

Переменный ток получил широкое распространение благодаря применению трансформаторов, позволяющих с минимальными потерями преобразовывать амплитуду переменного сигнала, а значит передавать электроэнергию на большие расстояния по длинным линиям с высоким напряжением и малым током с меньшими потерями, а затем распределять её между потребителями с низким напряжением и большим током.

Наиболее распространёнными и самыми простыми из переменных сигналов являются синусоидальные (гармонические), представляемые в форме (см. рис. 5-1):

$$i = I_m \sin\left(\omega t + \psi_i\right) \tag{5.1}$$

Рис. 5-1. Синусоидальный сигнал с нулевой (а), положительной (б) и отрицательной (в) начальной фазой

Здесь, как более удобная, используется круговая частота $\omega = 2\pi f$, измеряемая в радианах в секунду, f = 50 Гц соответствует $\omega \approx 314,16$ с⁻¹;

аргумент синуса называется $\phi asou$, при t = 0 получается начальная ϕasa ψ_i . Начальная фаза определяет величину сигнала в начальный момент времени и может быть положительной, отрицательной или нулевой. Она отсчитывается от начала синусоиды до оси ординат; началом синусоиды считается точка перехода от отрицательной полуволны к положительной.

По теореме Фурье, любую периодическую функцию можно представить в виде ряда, содержащего постоянную составляющую и ряд гармоник (синусоид) с частотами, кратными основной:

$$i = I_{m0} + \sum_{k=1}^{\infty} I_{mk} \sin\left(k\omega t + \psi_k\right).$$
(5.2)

Это равносильно наложению (суперпозиции) отдельных гармонических источников, реакцию каждого их которых можно в первом приближении рассматривать как независимую от других. Если в схеме действуют источники разной частоты, в том числе составляющие периодической функции, то на каждой из этих частот схема рассчитывается отдельно, а результаты затем складываются.

По традиции, мгновенные составляющие токов, напряжений и других величин обозначают строчными буквами: i, u ..., амплитуды сигналов обозначают заглавными буквами с индексом m: I_m , U_m ...

Разность фаз $\varphi = \psi_1 - \psi_2$ двух синусоидальных сигналов называется *углом сдвига*. При $\varphi = 0$ ($\psi_1 = \psi_2$) говорят, что сигналы совпадают по фазе, при $\varphi = \pm \pi$ сигналы находятся в противофазе, при $\varphi = \pm \pi/2$ в квадратуре. Если $\varphi > 0$, то говорят, что первый сигнал *опережает* второй сигнал по фазе, если $\varphi < 0$, то *отстаёт* по фазе.

5.1.1. Действующее (эффективное) значение

Представим два одинаковых резистора с номиналом R; через первый течёт постоянный ток I, а через второй — переменный ток i с амплитудой I_m . И пусть токи подобраны так, что мощность, которая выделяется в обоих резисторах за время полного периода T, одинакова.

Действующее (эффективное) значение переменного тока — это такое значение постоянного тока, который за время, равное периоду переменного тока, выдаёт в сопротивлении такое же количество тепла. Для нахождения этого значения воспользуемся законом Джоуля– Ленца:

$$I^{2}RT = \int_{0}^{T} i^{2}Rdt, \qquad (5.3)$$

где величина в левой части — $I^2 RT$ — выражает количество энергии, выделяемой за время периода в резисторе величиной R постоянным током величиной I; величина в правой части выражает количество энергии, выделяемой за время периода в резисторе R переменным током i. Отсюда действующее значение I переменного тока равно

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2} dt} = \dots (для \ синусоидального \ тока) = \frac{I_{m}}{\sqrt{2}}$$
(5.4)

Аналогично действующим значением синусоидального напряжения u с амплитудой U_m называется величина $U = U_m / \sqrt{2}$.

Большинство измерительных приборов показывают действующие значения измеряемых сигналов.

5.1.2. Особенности записи топологических уравнений при расчёте по синусоидальному сигналу

При расчёте схемы по синусоидальному сигналу используются уже известные из первой части курса принципы, законы и методы (законы Кирхгофа, МУП, МКТ и т. п.), за одним исключением – все сигналы синусоидальные и связи между токами и напряжениями элементов выражаются компонентными уравнениями (1.1), (1.4), (1.7).

Рассмотрим простейшее последовательное соединение двухполюсников, подключённое к внешнему источнику э. д. с. с напряжением *u* :

Рис. 5-2. Последовательная R-L-С-цепь

Запишем для этой схемы закон Ома для замкнутого контура (с использованием компонентных уравнений (1.1), (1.4), (1.7)):

$$u = u_R + u_L + u_C = iR + L\frac{di}{dt} + \frac{1}{C}\int idt$$
(5.5)

При использовании таких выражений в топологических уравнениях получаются интегрально-дифференциальные уравнения, решение которых во многих реальных случаях возможно только *в численном виде*.

5.2. Компле́ксный (символический) метод записи сигналов

Для записи и анализа *в алгебраическом виде* уравнений, описывающих схему при воздействии синусоидального сигнала, используют комплексный (символический) метод записи, в котором сигналы записываются в форме комплексных чисел.

5.2.1. Операции с комплексными числами

Комплексное число – это двумерное число, или упорядоченное множество двух обычных действительных чисел. Оно записывается в виде (A,B), где первый элемент A называется действительной частью, а второй элемент B мнимой частью комплексного числа. Комплексное число можно представить в виде точки на двумерной комплексной плоскости, где по горизонтальной оси откладывается действительная часть A, а по вертикальной оси мнимая часть B. В этом случае декартовы координаты точки будут (A,B); для указания точки на комплексной плоскости также можно использовать полярные координаты: длину F_m радиус-вектора к данной точке и угол ψ его наклона к горизонтальной оси (см. рис. 5-3).

Связь между декартовыми и полярными координатами точки:

$$F_{m} = \sqrt{A^{2} + B^{2}} \quad \psi = \operatorname{arctg} \frac{B}{A}$$

$$A = F_{m} \cos \psi \quad B = F_{m} \sin \psi$$

$$+j \quad (A,B)$$

$$B \quad \psi \quad (A,B)$$

$$A = I \quad A \quad I$$

$$(5.6)$$

Рис. 5-3. Комплексное число (A,B) на комплексной плоскости A – действительная часть, B – мнимая часть, F_m – амплитуда, ψ – аргумент

Для операций с комплексными числами используют две формы записи комплексного числа: алгебраическую (A + jB) и показательную $(F_m e^{j\psi})$, соответствующие декартовым и полярным координатам. Здесь $j = \sqrt{-1}$ – мнимая единица.

Операции с мнимой единицей (иллюстрируются на комплексной плоскости):

$$e^{j\frac{\pi}{2}} = j \quad e^{j\pi} = j^2 = -1 \quad e^{j\frac{3\pi}{2}} = j^3 = -j \quad \frac{1}{j} = -j$$
 (5.7)

Сумма двух чисел (A, B) и (C, D): (A + jB) + (C + jD) = (A + C) + j(B + D) (5.8)

Произведение двух чисел
$$(A,B)$$
 и (C,D) :

$$(A+jB)\cdot(C+jD) = AC+jAD+jBC+j^{2}BD =$$

=(AC-BD)+j(AD+BC) (5.9)

5.2.2. Соответствие синусоидальной и комплексной форм записи сигналов

Любому синусоидальному сигналу («оригиналу») f действительной переменной можно поставить в соответствие функцию \dot{F}_m компле́ксной переменной («изображение»):

$$f = F_m \sin(\omega t + \varphi) = {}^{\bullet} \dot{F}_m = F_m e^{j\omega t} e^{j\varphi}, \qquad (5.10)$$

где $F_m e^{j\varphi}$ называется комплексной амплитудой; множитель $e^{j\varphi}$ – это оператор поворота, его можно не учитывать, т. к. схема рассчитывается только на одной частоте и без учёта времени.

Изображение сигнала, как комплексное число, можно представить в алгебраической и показательной формах:

$$\dot{F}_m = F_m e^{j\varphi} = A + jB \tag{5.11}$$

Операции дифференцирования и интегрирования оригиналов становятся алгебраическими операциями умножения и деления изображений на величину *j\omega*:

$$\frac{df}{dt} \bullet = {}^{\bullet} j\omega \dot{F}_m; \quad \int_0^T f dt \bullet = {}^{\bullet} \frac{\dot{F}_m}{j\omega}$$
(5.12)

Обычно вместо комплексных амплитуд рассматривают комплексные действующие величины:

$$\dot{I} = \frac{\dot{I}_m}{\sqrt{2}} = Ie^{j\psi_i}; \quad \dot{U} = \frac{\dot{U}_m}{\sqrt{2}} = Ue^{j\psi_u}$$
 (5.13)

5.2.3. Комплексные сопротивление и проводимость

Комплексное сопротивление равно отношению комплексного напряжения \dot{U} к комплексному току \dot{I} ; как комплексное число оно имеет действительную и мнимую части:

$$\underline{Z} = \frac{\dot{U}}{\dot{I}} = \frac{Ue^{j\beta}}{Ie^{j\alpha}} = \frac{U}{I}e^{j(\beta-\alpha)} = ze^{j\gamma} = R + jX, \qquad (5.14)$$

где *z* — полное сопротивление,

 $R = \operatorname{Re} \underline{Z}$ — активное сопротивление,

 $X = \text{Im } \underline{Z}$ — реактивное сопротивление.

Величина, обратная комплексному сопротивлению, называется *комплексной проводимостью*, она также имеет действительную и мнимую части:

$$\underline{Y} = \frac{1}{\underline{Z}} = \frac{I}{\underline{U}} = \frac{Ie^{j\alpha}}{Ue^{j\beta}} = \frac{I}{U}e^{j(\alpha-\beta)} = ye^{-j\gamma} = G - jB, \qquad (5.15)$$

где y = 1/z — полная проводимость,

 $G = \operatorname{Re} \underline{Y}$ — активная проводимость,

 $B = \text{Im } \underline{Y}$ — реактивная проводимость.

Нужно заметить, что в общем случае $G \neq 1/R$, а $B \neq 1/X$.

5.2.4. Компонентные уравнения в комплексной форме

В табл. 5-1 представлены компонентные уравнения двухполюсников в исходной схеме замещения и в комплексной схеме замещения.

Представим последние три выражения из табл. 5-1 в виде закона Ома, тогда коэффициенты связи между комплексным напряжением и комплексным током можно назвать комплексными сопротивлениями соответствующих элементов: комплексное сопротивление резистора получается равным R, комплексное сопротивление ёмкости получается $(-jX_C)$, а комплексное сопротивление индуктивности получается jX_L . Величина $X_C = 1/(\omega C)$ называется емкостным сопротивлением, величина $X_L = \omega L$ называется индуктивным сопротивлением.

	Исходная схема замещения	Комплексная схема замещения
E:	$e = E_m \sin\left(\omega t + \psi_e\right)$	$\dot{E} = E e^{j\psi_e}$
J:	$j = J_m \sin\left(\omega t + \psi_j\right)$	$\dot{J} = Je^{j\psi_j}$
R:	$u_R = R \cdot i_R$	$\dot{U}_R = R \cdot \dot{I}_R$
C:	$u_C = \frac{1}{C} \int_0^T i_C dt$	$\dot{U}_{C} = \frac{1}{C} \cdot \frac{\dot{I}_{C}}{j\omega} = -j \frac{1}{\omega C} \cdot \dot{I}_{C} = -j X_{C} \dot{I}_{C}$
L:	$u_L = L \cdot \frac{di_L}{dt}$	$\dot{U}_L = L \cdot j\omega \dot{I}_L = jX_L \dot{I}_L$

Табл. 5-1. Компонентные уравнения в синусоидальной форме (слева) и в комплексной форме (справа)

Рис. 5-4. Векторная диаграмма токов и напряжений для ёмкости и индуктивности

В результате перевода компонентных уравнений в комплексную форму, все они принимают вид закона Ома. *Таким образом, для анализа и расчёта схемы можно заменить каждый пассивный элемент его комплексным сопротивлением*. Получаемая при этом резистивная схема замещения называется комплексной схемой замещения. Для её анализа и расчёта применяется вся уже известная методика анализа и расчёта схем по постоянному сигналу с единственным отличием: все сигналы записываются в комплексной форме. При использовании комплексного метода записи уравнений вместо интегро-дифференциальных уравнений для функций времени рассматриваются алгебраические уравнения для комплексных изображений.

После того, как будут получены комплексные изображения результатов, они переводятся в обычную синусоидальную форму с помощью (5.10).

5.3. Мощность в цепи переменного тока

5.3.1. Расчёт мощности синусоидального сигнала

В общем случае ток и напряжение на входе любой пассивной цепи, рассматриваемой как двухполюсник, сдвинуты по фазе на угол $\varphi = \psi_u - \psi_i$:

$$u = U_m \sin(\omega t + \psi_u)$$
 и $i = I_m \sin(\omega t + \psi_i)$

Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

$$p = ui = U_m \sin(\omega t + \psi_u) I_m \sin(\omega t + \psi_i) =$$

$$= \frac{U_m I_m}{2} \left[\cos \varphi - \cos(2\omega t - \varphi) \right] = \underbrace{UI \cos \varphi}_{\text{постоянно}} - \underbrace{UI \cos(2\omega t - \varphi)}_{\text{зависит от } t}$$
(5.16)

Мощность равна 0 тогда, когда либо напряжение, либо ток равны 0.

Рис. 5-5. Пример соотношения сигналов тока, напряжения, и мощности

Активная мощность — среднее значение мощности за полный период, т. е. постоянная составляющая мощности:

$$P = \frac{1}{T} \int_0^T p dt = UI \cos \varphi, \ [P] = Bm$$
(5.17)

Если $\varphi \neq 0$, то в течение каждого периода имеются промежутки времени, когда напряжение и ток имеют различное направление, и тогда мощность, поступающая в цепь, отрицательна, т. е. энергия возвращается из цепи источнику.

Введём понятие полной мощности. Дело в том, что электрические сети, машины, аппараты обычно рассчитываются на определённое номинальное напряжение (определяемое уровнем изоляции) и на определённый номинальный ток (определяемый нагревом проводников). Оба эти ограничения не зависят от угла сдвига фаз между током и напряжением. Соответственно, имеет смысл использовать параметр, не зависящий от φ и имеющий смысл максимально возможной активной мощности. Полная мощность равна произведению действующих значений напряжения и тока, т. е. максимально возможной активной мощности.

$$S = UI, [S] = BA \tag{5.18}$$

Отношение активной мощности к полной называется коэффициентом мощности:

$$\frac{P}{S} = \frac{UI\cos\varphi}{UI} = \cos\varphi \tag{5.19}$$

Коэффициент мощности $\cos \varphi$ показывает, какая часть средней мощности передаётся от генератора к потребителю при работе генератора с предельно допустимыми U и I. При заданном P уменьшение $\cos \varphi$ приводит к увеличению токов в проводах и увеличению потерь мощности.

Как правило, основную энергию на предприятиях потребляют электрические двигатели, т. е. нагрузка является активно-индуктивной ($\varphi > 0$). Поэтому основным методом увеличения коэффициента мощности является включение конденсаторов параллельно нагрузке.

В дополнение к понятию активной мощности, часто используют понятие *реактивной мощности*:

$$Q = UI \sin \varphi, [Q] = BAp \tag{5.20}$$

Полная, активная и реактивная мощности связаны между собой следующими соотношениями:

$$S^{2} = P^{2} + Q^{2}, \text{ tg} \varphi = \frac{Q}{P}$$
 (5.21)

Примечание: активная и реактивная мощности сами по себе не определяют совершаемой работы, они лишь характеризуют скорость обмена энергией между источником и цепью. Соверщаемая работа или энергия определяются интегралом активной мощности за период работы:

$$A = \int_0^T P dt = \int_0^T U I \cos \varphi dt \tag{5.22}$$

Примечание: величина активной мощности измеряется ваттметром; величина потребляемой энергии измеряется счётчиком.

5.3.2. Расчёт мощности в комплексной форме

Комплексной мощностью называют произведение комплексного напряжения на сопряжённое комплексному току:

$$\tilde{S} = \dot{U}I = Ue^{j\psi_u}Ie^{-j\psi_i} = UIe^{j(\psi_u - \psi_i)}$$

$$= se^{j\varphi}$$

$$= UI\cos\varphi + jUI\sin\varphi = P + jQ$$
(5.23)

Умножение на сопряжённое необходимо, чтобы фаза произведения была равна разности фаз напряжения и тока, а не их сумме. Здесь P — активная мощность, Q — реактивная мощность, S = UI — полная мощность.

Пример 12. Дано: U = 100 + j100, I = 20 - j10. Требуется определить S,P,Q.

$$\widetilde{S} = \overrightarrow{U}I = (100 + j100)(20 + j10) = 2000 - 1000 + j2000 + j1000 = 1000 + j3000$$

Отсюда
 $P = 1000 \ Bm, \ Q = 3000 \ BAp, \ S = \sqrt{1000^2 + 3000^2} = 1000\sqrt{10} \ BA. \blacksquare$

5.4. Анализ цепи по синусоидальному сигналу 5.4.1. Общие положения

5.4.2. Примеры анализа цепи комплексным методом

□ Пример 13. Необходимо рассчитать ток и эквивалентное сопротивление в схеме рис. 5-6, а.

Схема на рис. 5-6, а представляет собой последовательное соединение сопротивления, индуктивности и ёмкости, которое иногда называется R-L-С-цепью, при воздействии внешнего источника синусоидального напряжения.

Мгновенное значение полного напряжения данной ветви можно представить в виде суммы напряжений, падающих на отдельных элементах:

$$u_{AB} = u_R + u_L + u_C = iR + L\frac{di}{dt} + \frac{1}{C}\int idt$$
 (5.24)

Полное напряжение данной ветви в комплексной форме равно

$$\dot{U}_{AB} = \dot{U}_R + \dot{U}_L + \dot{U}_C = \dot{I} \cdot R + \dot{I} \cdot jX_L - \dot{I} \cdot jX_C$$
(5.25)

Полное комплексное сопротивление ветви:

$$\underline{Z} = \frac{\dot{U}}{\dot{I}} = \frac{\dot{U}_{R} + \dot{U}_{L} + \dot{U}_{C}}{\dot{I}} = R + jX_{L} - jX_{C} = R + j(X_{L} - X_{C})$$
(5.26)

Рис. 5-6. Исходная схема (а), комплексная схема замещения (б), эквивалентное комплексное сопротивление (в)

1) Если $X_L > X_C$ (больша́я ω), то характер двухполюсника индуктивный;

2) Если $X_C > X_L$, то характер двухполюсника емкостной;

3) Если $X_C = X_L$, то характер двухполюсника резистивный, следствием чего является *резонанс* (см. п. 5.5. Резонанс в электрических цепях).

□ Пример 14. Необходимо рассчитать ток i₄ в схеме рис. 5-7, а по синусоидальному сигналу, получить численный ответ.

Параметры элементов: $e_1 = 20\sin(1000t + \pi/4)$ В, $L_3 = L_6 = 10$ мГн, $R_5 = R_6 = 10$ Ом, $C_4 = C_5 = 100$ мкФ, $j_2 = 1,41\sin(1000t - \pi/2)$ А.

 Перемещаемся в комплексное пространство для получения резистивной схемы рис. 5-7, б. Расчёт будем вести в действующих значениях. Схема рис. 5-7, а изменяется в соответствии с компонентными уравнениями:

а) источники питания *e*₁ и *j*₂ получают комплексные значения:

$$\dot{E}_1 = E_1 e^{j\psi_e} = \frac{20}{\sqrt{2}} e^{j\pi/4} = 10 + j10 \text{ B},$$
$$\dot{J}_2 = J_2 e^{j\psi_j} = \frac{1,41}{\sqrt{2}} e^{-j\pi/2} = -j \text{ A}.$$

б) резисторы R_5 и R_6 сохраняют функцию и значение;

в) ёмкости C_4 и C_5 , а также индуктивности L_3 и L_6 , заменяются соответствующими комплексными сопротивлениями :

$$\underline{Z}_{C5} = \underline{Z}_{C4} = -jX_{C4} = -j/(\omega C_4) = -j10 \text{ Om},$$
$$\underline{Z}_{L3} = \underline{Z}_{L6} = jX_{L3} = j\omega L_3 = j10 \text{ Om}$$

В преобразованной комплексной схеме необходимо найти комплексное действующее значение I_4 .

Рис. 5-7. Исходная схема (а), преобразованная схема для расчёта комплексным методом (б)

- 2) Решение будем искать методом эквивалентного источника. Для этого ветвь с искомым токов извлекаем из схемы; оставшийся фрагмент активный двухполюсник по отношению к точкам В и С заменяем эквивалентным источником э. д. с. Для нахождения параметров эквивалентного источника E₃ и Z₃ вводим активный двухполюсник в режим холостого хода XX:
- 3) Напряжение холостого хода $\dot{U}_{xx} = \dot{U}_{CB}$ будем искать методом наложения как суммарную реакцию двух независимых источников \dot{E}_1 и \dot{J}_2 . В соответствии с этим методом, каждый из источников по очереди остаётся работать, остальные источники при этом обнуляются.

Рис. 5-8. Замена фрагмента схемы эквивалентным источником

Рис. 5-9. Вспомогательные схемы для поиска эквивалентного э. д. с. $\dot{E}_{_9}$, равного напряжению XX $\dot{U}_{_{XX}}$: с источником \dot{E}_1 (а), с источником \dot{J}_2

а) Оставляем работать источник \dot{E}_1 , обнуляя источник \dot{J}_2 . Вспомогательная схема изображена на рис. 5-9, а.

Так как ветвь с резистором jX_{L3} оборвана, то по ней ток не течёт, и напряжение в точке С равно напряжению в точке D. Следовательно, для нахождения \dot{U}_{CB} достаточно найти \dot{U}_{DB} . Схема рис. 5-9, а представляет собой один контур, в котором находятся источник \dot{E}_1 и несколько последовательных сопротивлений. Для поиска напряжения на паре из них (jX_{L6} и R_6) мы можем воспользоваться правилом делителя напряжения:

$$\dot{U}_{xx,1} = \dot{U}_{CB,1} = \dot{U}_{DB,1} = -\dot{E}_1 \frac{(R_6 + jX_{L6})}{(R_6 + jX_{L6}) + (R_5 - jX_{C5})} =$$
$$= -(10 + j10) \frac{(10 + j10)}{(10 + j10) + (10 - j10)} =$$
$$= -10 \frac{(1 + j)^2}{2} = -5(j(1 + 2j + j^2)) = -10j$$

Знак «---» был использован, т. к. направления источника $\dot{E_1}$ и напряжения $\dot{U}_{DB,1}$ противоположны.

б) Оставляем работать источник \dot{J}_2 , обнуляя источник \dot{E}_1 . Вспомогательная схема изображена на рис. 5-9, б.

Ток источника \dot{J}_2 делится между параллельными ветвями 1 и 5-6. Но сопротивление ветви 1 равно нулю: $\underline{Z}_1 = 0$, следовательно, весь ток течёт туда, а в ветви 5-6 ток будет равен нулю. Соответственно, потенциалы точек В и D равны и для нахождения $\dot{U}_{CB,2}$ достаточно найти $\dot{U}_{CD,2}$. Напряжение $\dot{U}_{CD,2}$ можно найти из схемы рис. 5-9, б через сопротивление jX_{L3} :

$$\dot{U}_{xx,2} = \dot{U}_{CB,2} = \dot{U}_{CD,2} = -\dot{J}_2 \cdot jX_{L3} =$$
$$= -(-j) \cdot j10 = 10 j^2 = -10$$

Знак «---» здесь использован потому, что напряжение на jX_{L3} противоположно по знаку $\dot{U}_{CD,2}$, т. к. напряжение на сопротивлении падает сонаправленно протекающему току.

в) Э. д. с. эквивалентного источника $\dot{E}_{_{3}}$, равная суммарному напряжению холостого хода $\dot{U}_{_{xx}}$, равна

$$\dot{E}_{xx} = \dot{U}_{xx,1} + \dot{U}_{xx,2} = -10 - 10j.$$

Комплексное сопротивление эквивалентного источника <u>Z₉</u> = <u>Z_{CB}</u> найдём, обнулив все источники питания в режиме холостого хода (вспомогательная схема изображена на рис. 5-10).

Рис. 5-10. Вспомогательная схема для поиска эквивалентного комплексного сопротивления <u>Z</u>₂

Как проиллюстрировано на вспомогательной схеме, сопротивление между точками С и В состоит из следующих элементов: сопротивления jX_{L3} , последовательно с которым подключены два параллельных фрагмента: $(R_5 - jX_{C5})$ и $(R_6 + jX_{L6})$: $\underline{Z}_9 = (R_5 - jX_{C5}) || (R_6 + jX_{L6}) + jX_{L3} =$ (10, i10) (10 + i10) (1 - i10)

$$=\frac{(10-j10)\cdot(10+j10)}{(10-j10)+(10+j10)}+j10=10\frac{(1-j^2)}{2}+j10=10+j10$$

$$\dot{I}_4 = \frac{E_3}{\underline{Z}_3 - jX_{C4}} = \frac{-10 - j10}{(10 + jX_0) - jX_0} = -1 - j.$$

Далее необходимо найти выражение для тока четвёртой ветви в экспоненциальной форме (см. для иллюстрации рис. 5-11), чтобы в итоге получить его запись в виде функции времени — в синусоидальной форме:

$$\dot{I}_4 = \frac{2}{\sqrt{2}}e^{-j\frac{3\pi}{4}} = \dot{i}_4 = 2\sin\left(1000t - \frac{3\pi}{4}\right).$$

Рис. 5-11. Поиск комплексной амплитуды результата